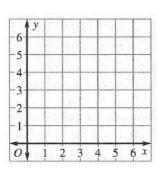

1. Graph the ordered pairs.

2. Complete the input-output table for the function.

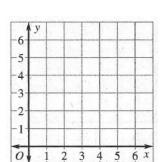
a.
$$y = 3x + 2$$

x	0	1	2	3
y				

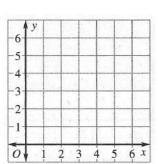

b.
$$y = 4x - 1$$

x	1	2	3	4		
y	y					

3. Graph the function.

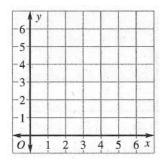

a.
$$y = 6 - x$$

Domain: 6, 5, 4, 3, 2

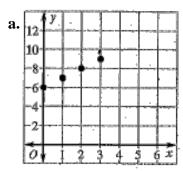


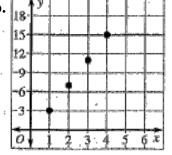
b.
$$y = 1/3 x$$

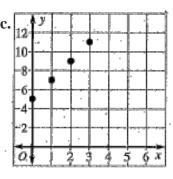
Domain: 6, 9, 12, 15, 18 Domain: 1, 2, 3, 4, 5

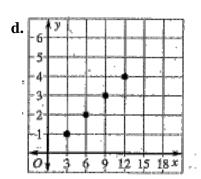


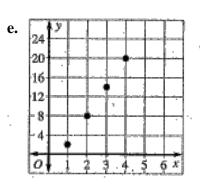
c.
$$y = 4x - 3$$

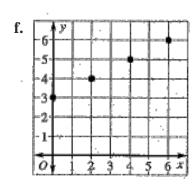


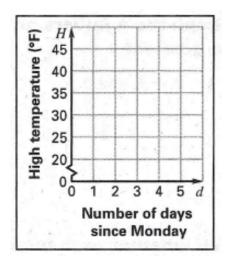

d.
$$y = 1.2x$$


Domain: 1, 2, 3, 4, 5

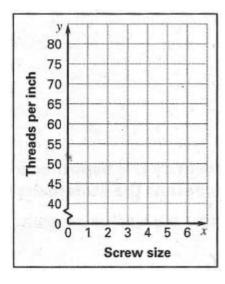



4. Write a rule for the function represented by each graph. Identify the domain and range of the function.





5. High Temperatures The table shows the high temperature *H* (in degrees Fahrenheit) in a city during the week as a function of the number of days *d* since Monday. Graph the function. Describe how the high temperatures change as the week progresses.


Number of days since Monday, <i>d</i>	0	1	2	3	4	5
High temperature (degrees Fahrenheit), H	24	34	41	39	37	39

6. Metal Screws The table shows the number of threads per inch on a screw as a function of screw size.

Screw size number, x	0	1	2	3	4	5	6
Number of threads per inch, y	80	72	64	56	48	44	40

- **a.** Graph the function.
- **b.** Describe how the number of threads per inch changes as the screw size increases.

c. Would it be reasonable to expect a #8 screw to have 32 threads per inch? Explain.