Chapter 1: Function Sense

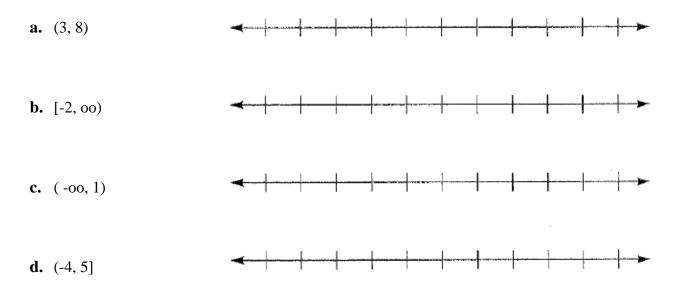
Learning Objectives

- 1. Solve linear inequalities in one variable numerically and graphically.
- 2. Use properties of inequalities to solve linear inequalities in one variable algebraically.

Practice Exercises

- **1.** *Express each inequality in interval notation.*
 - **a.** x < 14 **b.** $x \ge -5$ **c.** $-2.4 < x \le 13$ **d.** $-100 \le x \le 100$
- 2. Express each interval as an inequality.
 - **a.** [-5, 9) **b.** $(6, \infty)$ **c.** $(-\infty, 2]$ **d.** (-8.2, -4)
- **3.** Solve each inequality algebraically.
 - **a.** 5x > 35 **b.** 8x < -48 **c.** $4 3x \ge 19$

d. $6-5x \ge -14$ **e.** 1-2x < -5 **f.** 7-4x < 15


g. $x + 8 \le 4x - 7$	h. $6x - 5 > 2x + 11$	i. $-1 < 2x - 3 < 5$
------------------------------	------------------------------	-----------------------------

Activity 1.15 – How Long Can You Live?

- 3. Solve compound inequalities algebraically.
- 4. Use interval notation to represent a set of real numbers described by an inequality.

j.
$$-8 < \frac{x}{3} - 1 < 4$$
 k. $4 \le 3x + 1 \le 19$

4. Graph each interval on a number line:

Concept Connections

1. What three approaches are used to solve inequalities?

2. Explain the difference between open interval, half-open (or half-closed) interval, and a closed interval. Give an example of each.