Chapter 1: Function Sense

Learning Objectives

- 1. Determine the equation (symbolic representation) that defines a function.
- 2. Determine the domain and range of a function.
- 3. Identify the independent and the dependent variables of a function.

Key Terms

Use the vocabulary terms listed below to complete each statement.

dependent independent continuous graphically discrete

- 1. ______ variable is another name for the output variable of a function.
- 2. ______ variable is another name for the input variable of a function.
- 3. _____ Functions are if they are defined only at isolated input values and do not make sense or are not defined for input values between those values.
- 4. _____ Functions are if they are defined for all input values, and if there are no gaps between any consecutive input values.
- 5. _____ When a function is defined, the input variable will be represented on the horizontal axis and the output on the vertical axis.

Practice Exercises

For#6-8, use the function $f(x) = 5x-6$.					
6. Determine <i>f</i> (<i>3</i>).	7. Determine <i>f</i> (-2.7).	8. Determine $f(c)$.			

For#9-11 use the function $g(y) =$	$-8y^2 + 6.2y + 13.$	
9. Determine $g(4)$.	10. Determine <i>g</i> (-5.1).	11. Determine $g(b)$

For #12-14, use the function $h(x) = 11$.					
12. Determine $h(6)$.	13. Determine <i>h</i> (- <i>14</i> .7).	14. Determine $h(d)$.			

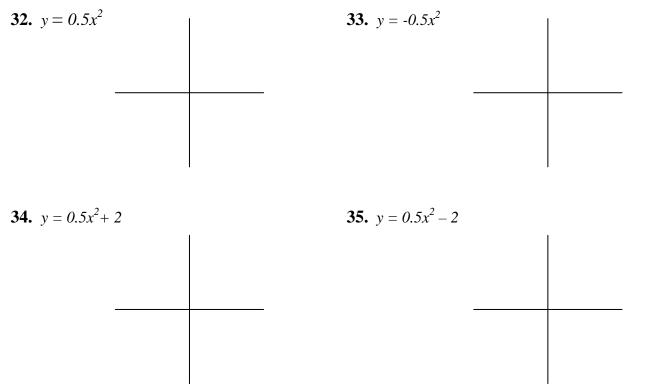
For #15-17, use the function p(x) = -

15. Determine <i>p</i> (-2).	16. Determine $p(0.5)$.	17. Determine $p(a)$
-------------------------------------	---------------------------------	-----------------------------

Activity 1.2 & 3

- 4. Represent a function verbally, symbolically, numerically, and graphically.
- 5. Distinguish between a discrete function and a continuous function.
- 6. Graph a function using technology.

For #18-20, use the function r(x) = 4 - 2.3x.


18. Determine r(-7). **19.** Determine r(8.4). **20.** Determine r(c).

For#21-23, use the following scenario:

Your job requires you to attend meetings at other campus locations which are within 50 miles. You are reimbursed at the rate of \$0.51 per mile for this travel.

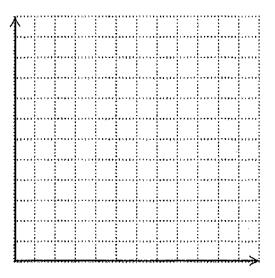
- **21.** Write a verbal statement that describes how the amount of reimbursement is determined.
- **22.** Identify the input variable of the function from Exercise #21.
- **23.** Identify the output variable of the function from Exercise #21.
- **24.** Write the verbal statement from Exercise #18, using function notation for the input variable. Let m represent the input variable. Let *R* represent the function and R (m) the output variable.
- **25.** From Exercise #24, identify the dependent variable
- **26.** Use the equation from Exercise #24 to determine the reimbursement for travel of 74 miles.
- **27.** Determine the domain of the function from Exercise #24.
- **28.** Determine the range of the function from Exercise #24.
- **29.** Determine the practical domain of the function from Exercise #24.
- **30.** Determine the practical range of the function from Exercise #24.
- **31.** For the function {(-3, 6), (9, 0), (7, 4), (4,17)}, determine the domain and range.

For #32-35 using the standard window of a graphing calculator, sketch a graph of each quadratic function.

For #36-40, use the following scenario:

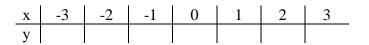
The week before final exams, the test center at a	Day	1	2	3	4	5
community college administered make-up tests to students as follows:	Number of tests	44	61	59	82	98
36. Plot each ordered pair as a point on an appropriately scaled and labeled set of coordinate axes.	X					
37. Determine the practical domain of the function.						••••
	.,,.			.,		
38. Determine the practical range of the function.						
				••••		
39. Is this function discrete? Why or why not?						
						>
10 Can this for the defined combalized by						

40. Can this function be defined symbolically? Why or why not?


For #41-45, use the following scenario:

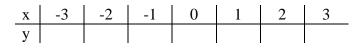
At an amusement park there is a 25% employee discount for food.

- **41.** Give a statement definition of the function
- **42.** Give a symbolic definition of the discount function.
- **43.** Give a numerical definition.


Item Price			
Amount of Discount			

- **44.** Give a graphical definition.
- **45.** Does the graph of the function consist of the five points from Exercise #41? Why or why not?

For #46-49, use the quadratic function $y = 0.0005x^2$


- **46.** Using the standard window of your graphing calculator to sketch a graph of the function.
- **47.** Use the table feature of your graphing calculator to complete the following table.

- **48.** Describe how you would use the results in Exercise #44 to help select an appropriate viewing window.
- **49.** Sketch a graph of the function with the new viewing window.

For #50-53, use the quadratic function $y = 1000x^2$

- **50.** Using the standard window of your graphing calculator to sketch a graph of the function.
- **51.** Use the table feature of your graphing calculator to complete the following table.

- **52.** Describe how you would use the results in Exercise #48 to help select an appropriate viewing window.
- **53.** Sketch a graph of the function with the new viewing window.

Concept Connections

1. Explain the difference between the domain and the practical domain of a function.

2. What are real numbers?

- **3.** What is the difference between a discrete and continuous function?
- **4.** In what four ways can a function be represented?